Under review as a conference paper at ICLR 2025

INTERLEAVING OPTIMIZERS FOR DNN TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimizers are crucial in deep neural network (DNN) training, affecting model
quality and convergence. Researchers have found that different optimizers often
suit different problems or different stages of a problem. Hence, some studies have
tried to combine different optimizers to better train DNNs. However, existing
methods are limited to simple optimizer switch strategies, which leads to unstable
model quality and slow convergence. In this paper, we propose a fine-grain opti-
mizer switch method called Interleaving Optimizer for Model Training (IOMT),
which automatically switches to the appropriate optimizer among different opti-
mizer types based on the training stage information, achieving faster convergence
and higher test accuracy. IOMT employs surrogate models to estimate the per-
formance of different optimizers during training and is supported by a transfer-
ability assessment to predict the training cost. By combining the transferability
assessment, performance estimation, and training process information with an ac-
quisition function, IOMT calculates the optimization gain of each optimizer and
switches the optimizer with the largest gain for the next training stage. The exper-
imental results on full training and fine-tuning demonstrate that IOMT achieves
faster convergence (e.g., 10% on the st/10 dataset) and better performance (e.g.,
3% accuracy improvement on the cifarl0 dataset) compared to existing methods.

1 INTRODUCTION

The choice of optimizer and its hyperparameter settings (e.g.,
the learning rate) profoundly impacts the model quality and
convergence speed in deep neural networks (DNNs)
[daner, 2020} [Hassan et al] [2023). Researchers typically use a

—SGD —Adagrad —Adam

start best

best

single optimizer for the entire training (i.e., a coarse-grain op-
timizer setting) and have some empirical preferences for opti-
mizer selection, such as using SGD for head fine-tuning
and Adam for LoRA 2021). How-
ever, recent studies find that different optimizers are not only
suited to specific tasks but also exhibit unique characteristics
and optimization strategies at different stages of a training
[2016). Figure [I] presents the optimization results of
three optimizers with varying runs (i.e., 200 times with dif-
ferent random seeds and hyperparameter settings) on four de-

best

rosenbrock

start

himmelblau

best
start

best

griewank

start

best

ackley

terministic functions (rosenbrock, himmelblau, griewank and
ackley). Different optimizers follow distinct paths in the same
start point even with varying runs, making it difficult to defini-
tively identify the “one size fits all” optimizer.

Figure 1: The different training
processes with various optimizers.

To address such challenges of coarse-grain optimizer tuning, some studies have attempted to com-
bine the benefits of different optimizers during a single training process recently. SWATS
achieved better generalization by switching from Adam to SGD. Chen et al. proposed
a partially adaptive momentum estimation method, which unifies the adaptive gradient methods (i.e.,
Adam or Amsgrad) with SGD by introducing a partial adaptive parameter 2018). Ad-
aBound employed dynamic bounds on learning rates to achieve a gradual and
smooth transition from adaptive methods to SGD. However, these approaches remain limited in
the optimizer types (i.e., only two kinds of optimizers) and combining methods (i.e., simple switch
strategy), which leads to unstable model quality and high training cost 2020).

Under review as a conference paper at ICLR 2025

Based on the idea that “different optimizers suit for different parameter states”, we propose a fine-
grain optimizer switch method called Interleaving Optimizer for Model Training (IOMT). During
the training, IOMT constructs surrogate models for different optimizers to predict their optimiza-
tion benefits under various model parameter states. To better assess the benefits of the optimizers
(i.e., potential loss reduction and convergence speed), IOMT calculates an optimization gain score
for each optimizer using the acquisition function that combines the predicted performance, a trans-
ferability assessment, and training process information. By carefully switching the optimizer with
the highest score during training, IOMT achieves faster convergence and better model quality. To
summarize, the key contributions of this paper are as follows.

* We investigate the distinct strengths and optimization directions of various optimizers across dif-
ferent tasks and parameter states. Furthermore, we demonstrate that combining different optimiz-
ers during training can help achieve higher-quality models and better convergence.

* We present a novel fine-grain optimizer switch method called Interleaving Optimizer for Model
Training (IOMT), which automatically switches suitable optimizers according to the parameter
state during training. IOMT estimates the performance of optimizers under different parameter
states by constructing Gaussian surrogate models and calculates the optimization gain using the
acquisition function. By iteratively selecting the optimizer with the highest gain score, IOMT
produces higher-quality models with faster convergence.

* We implement IOMT and conduct experiments on multiple models and tasks, including full train-
ing and partial fine-tuning. The experimental results demonstrate the advantages of our methods,
such as achieving over 1% improvement in predictive accuracy with 10% reduction in conver-
gence time, while also yielding superior generalization models. In addition, the case study and
several independent experiments are presented to further explore the performance of IOMT.

2 RELATED WORKS AND BACKGROUND

In this section, we provide the background of our work, including the optimizers and the hybrid
optimizer methods. After that, we identify the limitations of existing approaches.

the development of optimizers

Adadelta NAdam Padam AdamP
SGD Momentum RMSpmpAdam AdamW AdaBound SAM ' Adan
NAG I Adagrad I AdaMax SWATS I AdaBelief I Adai [
L 1 .) ? 1 N

1950s 1983 1999 2011 2012 2015 2016 2017 2018 2019 2020 2021 2022 2024

Figure 2: The development of neural network optimizers.

Optimizers. The optimizers and their hyperparameters are crucial for training DNNSs, as they effec-
tively adjust the model’s parameters to minimize the loss function. The traditional gradient descent
algorithm calculates the gradient of the loss function with respect to the model’s parameters across
the entire dataset and updates the parameters in the direction that reduces the loss (Ruder, [2016).
Following the gradient descent algorithm, researchers have proposed a variety of optimizers. Fig-
ure[2]illustrates a portion of the historical development of these optimizers. Instead of calculating the
gradient using the entire dataset, the Stochastic Gradient Descent (SGD) approximates the gradient
by using only a single sample or a small batch of samples (Robbins & Monro| [1951). To address
the slow convergence in ravines, the momentum technique is introduced in SGD (Sutskever et al.,
2013). The Nesterov Accelerated Gradient (NAG) further enhances convergence speed and accuracy
by incorporating a look-ahead mechanism into the update process (Qu & Li, 2019). Additionally,
researchers have explored methods for adaptive learning rates based on different model parame-
ters, such as RMSProp (Graves|, |2013), Adam (Kingma & Ba, 2014), and AdamW (Loshchilov
& Hutter, 2017). Beyond these, researchers have also proposed various second-order optimizers,
such as L-BFGS (Liu & Nocedal, |1989), K-FAC (Martens & Grosse, 2015)), and AdaHessian (Yao
et al., [2021)). However, due to their practical application challenges, second-order optimizers are
not further discussed in this paper. Additionally, researchers have attempted to develop new neural
network-based learned optimizers through a meta-learning approach (Andrychowicz et al. [2016}
Harrison et al.| [2022)).

Under review as a conference paper at ICLR 2025

Hybrid optimizer. Like other hyperparameter settings in training, there is no universal optimal op-
timizer in practical training (Wilson et al.,[2017). For instance, SGD with momentum is commonly
used in Computer Vision (CV), while Adam is favored for training transformer models in Natural
Language Processing (NLP) (Yao et al.| 2021). Some researchers have explored the performance
of different optimizers during training, noting that different optimizers follow distinct descent paths
at different saddle points (Im et al., |2016). Leveraging insights from multiple optimizers during
model training is crucial in both academic research and practical applications. While numerous
studies have investigated the adjustment of learning rates within optimizers (Gotmare et al., 2018}
He et al.| 2016; [Smith, 2017), research on switching between different optimizers remains limited.
Existing studies primarily focus on the basic form of switching, which involves transitioning from
one optimizer to another. For example, SWATS (Keskar & Socher, |2017) achieves favorable re-
sults by initially using Adam and then switching to SGD. Padam (Chen et al.| [2018) introduces a
partial adaptive parameter to integrate Adam with SGD. Meanwhile, AdaBound (Luo et al.} [2019)
implements dynamic bounds on learning rates to facilitate a gradual and smooth transition.

Limitations of current approaches. (i) Single optimizer: although researchers are continually en-
hancing existing optimizers to better adapt to model parameter states (e.g., ravines), the associated
computational cost cannot be ignored. In practical training, these complex optimizers do not neces-
sarily outperform basic SGD (Keskar & Socher, 2017). To obtain better models, researchers need
to train with different optimizers, which is a time-consuming process. Additionally, consistent op-
timizer training throughout the entire process (i.e., coarse-grain training) limits both model quality
and convergence speed. (ii) Hybrid optimizer: combining the advantages of different optimizers
can help improve model quality and convergence speed. Existing methods are limited to adjust-
ing learning rates or transitioning between two types of optimizers, neglecting the unique strengths
of different optimizers under different parameter states. Such a coarse mixing approach not only
restricts the stability of the model quality but also impacts convergence speed (Zhuang et al., [2020).

3 OUR PROPOSED METHODS: IOMT

To better utilize multiple optimizers, we propose a novel fine-grain optimizer switch method called
Interleaving Optimiezer for Model Traing (IOMT), which enables adaptive optimizer switching
during model training. In this section, we first provide a brief overview of IOMT. Then, we offer a
detailed introduction including its problem formulation, surrogate model, and acquisition function.

3.1 OVERVIEW OF OUR PROPOSED IOMT

Figure [3]illustrates the workflow of IOMT, and
a detailed description of IOMT with its pseu- ’

1. compute transferability

. . . / i < Nini \
docode is presented in Appendix [A] IOMT cal- weight @, (Equation 6) S SH
culates the transferability weight wy to assistin ———=—=—=-F—-———— bES T

. . . 2

the subsequent selection of optimizers before b > compressthemodel] 4

L. R o | parameter state 0! | 3a. 3b. get
the training (Step 1). During each optimizer || I weighted | | acquisition
witeh cvele (e a few iterati . | | random score e
switch cycle (i.e., a few iterations), IOMT first ,‘ 3. select Optlmlzem |I sample (Bquation 7)
compresses the model parameters 0° to get the : : : }
input of the surrogate model (Step 2). Then, |’ 4. train modc,l and || o L

. . : "
IOMT selects the appropriated optimizer o® | /L&Y Pamme‘e”’l | 6o wpdate | [oo oo
.. . . update
for the trteurnng of the (furrent Stage (StePS 3- |’ 5. calculate performance | Vii?galtll;g P surrogate
4). Obtaining the training losses, IOMT cal- ||| scores lquanon 2 1 (Equation sy [| models
culates the performance score s and updates || —— |
. i 6. update correspondrng I\ J

the corresponding surrogate model g* (Steps 5- 11 surrogate model g‘

6). By iteratively executing this process, [OMT

e = 4

I\optimizcr switch cycle (7 iterations)

achieves the fine-grain optimizer switching. Figure 3: The workflow of IOMT

For selecting the next optimizer (Step 3), [OMT

employs two methods: the weighted random

selection and recommendation based on the surrogate model. In the initial training stages, IOMT
uses the calculated score s to update the sampling weight w, for randomly selecting optimizers
(Steps 3a and 6a). After acquiring enough training results, IOMT selects the optimizers with the
highest gain e calculated by the acquisition function for each training stage (Step 3b).

Under review as a conference paper at ICLR 2025

3.2 MOTIVATION AND PROBLEM FORMULATION

Before introducing the details of the surro-
gate model and acquisition function in IOMT, >SGD +SGDM —Adagrad
we first provide the hypothesis underlying our
method: “different optimizers offer distinct op-
timization directions and are suited to different A

parameter states”. Figure []illustrates four ex- + L/ \

amples of the different optimization directions, -
which correspond to the subfigures in Figure[I]

It can be observed that although the five op- I*iter 10ms 1 jter 10ms
timizers provide similar directions at the first

iteration, their optimization paths diverge sig- \ /
nificantly after a few iterations. Previous stud- \ \

ies have also observed this phenomenon, not- (c) startat (-1.5,2) with /=0.01 (d) start at (-1.5,2) with /r=0.02
ing that optimizers exhibit different optimiza-

tion directions under varying parameter states Figure 4: The illustration of different optimizer
from both theoretical and visualization perspec- directions from the same start point.

tives (Im et al.| 2016). Therefore, we think that

the category of optimizers, like other hyperparameters, requires fine-grain tuning (i.e., dynamic al-
gorithm configuration) (Adriaensen et al.| [2022]).

RMSprop -®#Adam
Ist iter} 10ms 1 iter 10ms

(a) start at (0,1.5) with /r=0.01 (b) start at (-1,1.5) with /r=0.01

Building on this assumption, IOMT attempts to propose a fine-grain optimizer switch method that
leverages the strengths of different optimizers for distinct parameter states. Let o € O, A € A, and
t € T denote the optimizer type (e.g., SGD), hyperparameter setting (e.g., learning rate as 0.1) and
the training time (e.g., 5 iterations), respectively. Then, the training process with fine-grain optimizer
switches can be defined by a list of configurations C = {c!,c?, ..., c"} where ¢! = (0, A%, %). The
objective of IOMT is to find an optimal C* that minimizes the following objective function:

C* = argmin L£(8°,M,D,C) (1)
CEOXAXT

where 09 is the initial model parameter state, £(-) denotes the loss of the trained model M under
dataset D. Equation (1)) can be interpreted as fine-grain optimizer tuning for neural network training.
When all ¢! € C share the same settings, it aligns with the traditional training process, which is
described further in Section For clarity, in the following sections, we set all training times
t € T to a specific value 7, such as 5 iterations.

3.3 ESTIMATING OPTIMIZATION PERFORMANCE WITH SURROGATE MODELS

IOMT employs a Sequential Model-Based Optimization (SMBO) to address this fine-grain opti-
mizer tuning problem, as illustrated in Figure[5} Initially, IOMT trains the model M using random
configurations to obtain training experience (the blue block). Next, IOMT constructs surrogate mod-
els G = {g1, 92, ..., gm } for each optimizer type 0o; € O = {01, 09, ..., 0, } to guide the selection
of suitable configurations (the red block). By iteratively selecting training configurations and up-
dating surrogate models, IOMT achieves a fine-grain optimizer switch training. In this section, we
introduce IOMT’s surrogate model through its selection, input, output, and initialization.

I
I
\

. i
f{@} configuration | 1 pvec. surrogate models D <
:
1

S 2o 20 [

Figure 5: The training process of our proposed [OMT.

The selection of the surrogate model. IOMT utilizes the Gaussian process (GP) model (Schulz
et al., 2018)) as its surrogate model for several reasons. First, compared to other machine learning

Under review as a conference paper at ICLR 2025

models, GPs can efficiently train and continuously update the surrogated model as the training pro-
gresses. Second, GPs provide uncertainty estimation for predictions (i.e., the variance information),
which is useful for guiding the optimizer selection (as detailed in Section [3.4). Thirdly, as a pow-
erful probabilistic model, GPs effectively construct the overall distribution based on known points,
offering good flexibility and interpretability.

The input of the surrogate model. At the beginning of each optimizer cycle, IOMT acquires the
input for the surrogate model VEC'. The traditional surrogate model in SMBO uses the hyperparam-
eter A’ as its inputs. In IOMT, the input VEC? also includes a vector representing the parameter state
0° to learn the impact under different parameter states. Considering the high cost of using the full
model parameters, IOMT applies feature engineering to reduce the input size. Specifically, IOMT
uses Principal Component Analysis (PCA) (Labrin & Urdinez, |2020) to compress the parameters
layer by layer, lowering the training cost for the surrogate model. To further reduce the training cost
of surrogate models during training, IOMT selects only a few layers of the model as inputs for the
surrogate model (e.g., the classifier layer with a few hidden layers). In the case of partial fine-tuning,
IOMT focuses solely on the trainable parameters (e.g., the matrices A and B in LoRA).

The output of the surrogate model. In contrast to the results obtained from training to conver-
gence, IOMT emphasizes the “short-term” benefits each optimizer can achieve given the current
parameter state. Therefore, the output of IOMT’s surrogate model does not use the final loss or
accuracy, but instead employs a computed performance score s € [—1,1]. During the training
of a stage, IOMT performs multiple iterations of training, resulting in a set of losses, denoted as
l ={li,ls,.., 1.}, and [y represents the loss before training. IOMT first calculates the loss vari-

ation Al; = ﬁ for each iteration to get the average reduction pua and variance oa. To
estimate the optimization performance of different configurations, IOMT combines the considera-
tions of exploration (i.e., variance oA) and exploitation (i.e., mean pa) to calculate a weighted score
s = ua+aoa. However, such a weighted score overlooks the direction of variance. For instance, in
Figure |§ka), optimizers o1 and o3 have the same mean pa and variance oa, yet og achieves a lower
loss than o7 during training. A similar issue arises in the comparison between o, with 0 and os.

To address this problem, we incorporate boundary considerations into the performance calculation,
. . lo—max(l lo—min(l
including the upper bound A ypper = m(’lgi—:‘(gl;)w and lower bound A, owex = max(olo+m)w
Then, the final optimization performance score is defined as follows,

1
s = taﬂh(g(MA + Avpper + Arower) + a0A) @)

where « represents the weight for variance.

The initial weighted random selection. To ob-
o, o o tain enough training experience for the construc-
-0- - -X- tion of surrogate models, IOMT trains with random

!

|

|
Ua }r 61 64 61 configurations at the start of training. Though ran-
oy 1110 40 110 domly selecting configurations for initial training
Aupperi -17 19 41 can yield the necessary experience, IOMT employs
Biower| 57 57 61 a weighted random initialization method to enhance

s | 45 51 65 the performance of the initial training. Specifically,
(a) optimization gain example IOMT maintains a sampling weight w,.[j] € [0,1]
for each type of optimizer o; and its surrogate model
g, presenting the probability of being sampled. This
sampling weight is initially assigned a value of 1 to
achieve a random initialization. After completing
the training with the current configuration, the sam-

-0-SGD —-SGDM -xX-ADAM

mnist

4 3
pling weight for the corresponding optimizer w; is
updated to the normalized optimization performance
0 1 score as shown in Equation (E[), where wp,i, repre-

(b) two practical examples sents the minimal threshold.

Figure 6: Examples of the optimization gain. . 1
wy[j] = max<§(3 + 1), Wmnin)- 3)

Under review as a conference paper at ICLR 2025

3.4 SELECTING OPTIMIZERS WITH ACQUISITION FUNCTION

Although the calculated optimization performance s can be used to select configurations directly,
given the volatility of the loss and the complexity of model training, IOMT considers additional
factors in the design of acquisition, including variance, transferability, and the training process. In
this section, we introduce considerations designed for the acquisition function used in IOMT.

Consideration of variance. Benefiting from the advantages of the Gaussian process model, the
surrogate model can provide both the mean score s, and an estimate of the variance s,. Similar
to traditional hyperparameter optimization methods, IOMT also incorporates a trade-off between
exploration and exploitation in the acquisition function as follows

ACQ(Sy, 86) = S, + QSo, 4
where o represents the weight for variance, consistent with the definition in Equation (2.

Consideration of transferability. The training cost of DNNSs is closely related to the initial model
parameter state 8°. In fine-tuning, closely related upstream and downstream tasks (i.e., high trans-
ferability between the pre-trained model and the new task) are easier to train than those that are
dissimilar. Considering the idea that “a pre-trained model with lower transferability necessitates
more substantial tuning adjustments”, we use the model’s transferability w; as the weight of the
variance in the acquisition function, as shown in the following equation,

ACQ(8y, 80, wi) = Sy + (1 — wi)sq. 5)

The transferability w; is calculated using two types of evaluation metrics, including performance-
based metric w,, and distribution-based metrics w,. Firstly, the performance-based metric w,, € [0, 1]
is the testing result (e.g., accuracy) which is directly tested with the pre-trained model without deep
refining. Meanwhile, IOMT also uses some feature-based metrics, which analyze the distribution
of the output vectors or labels, to estimate the model’s transferability, including LogME (You et al.,
2021) and Leep (Nguyen et al.l 2020). Equation (G) presents the definition of transferability weight.

1 .
wy = Pw, + (1 — B)% Z sigmoid(wy). (6)
i=1

where w}, represents k distribution-based metrics and /3 represents the weight for two kinds of met-
rics. We use the sigmoid function to constrain the distribution-based metric within the range of [0, 1]
to align with the performance-based metric. Then, the weighted sum reflects the transferability of
the initial model for current tasks. A higher transferability weight indicates higher transferability,
while a lower one suggests lower transferability.

Consideration of training process. Additionally, IOMT takes into account the differing needs in
the early and later stages of training, specifically that “after the model becomes stable, smaller tuning
adjustments are needed.” As training progresses, the model continuously captures the knowledge
required for the current task, leading to a stabilization of the training loss. At the later stages of the
training, the target position on the parameter surface is constrained within a smaller range. In this
context, optimizers with larger amplitudes may disrupt the tuning process. Therefore, the proportion
of variance in the acquisition function should be reduced. Hence, we introduce a periodic halving of
the weight for variance information in IOMT as Equation (7), where i represents the current iteration
and n represents the halving period.

e = sigmoid(s, + (1 — 27L/") . w))s,). (7
4 DISCUSSION

To further introduce our proposed IOMT, we discuss its differences from the hyperparameter tuning
(HPO) and SMBO, along with its advantages and limitations in this section.

4.1 ANALYZING THE DIFFERENCES BETWEEN IOMT AND HPO

Compare with HPO. The optimizer, as one of the hyperparameters in DNNs, its automatic adjust-
ment is a form of HPO and AutoML. However, the vanilla training addresses it as a coarse-grain

Under review as a conference paper at ICLR 2025

HPO, where the hyperparameters remain fixed throughout the whole training process. The optimiza-
tion objective of such coarse-grain tuning can be formulated as below,

¢ = argmin L£(6°,D,c) (8)
c€OXAXT

where ¢ = (o0, A, t) represents the hyperparameter configurations (same as the defination in Sec-
tion [3.2). Compared to IOMT’s fine-grain tuning (i.e., Equation [I), the vanilla HPO restricts the
way model parameters are updated and the collaboration among different optimizers. Additionally,
though researchers have proposed hybrid methods that combine binary optimizers, these approaches
still integrate the optimizers from rules of thumb rather than performing fine-grain hyperparameter
optimization. For example, SWATS (Keskar & Socher, [2017) switches the training from Adam to
SGD based on the foundation that “Adam quickly adapts to problems in the early training phase,
while SGD promotes better generalization in the later stages”.

Compare with SMBO. IOMT adopts the idea of surrogate models and the acquisition function
in SMBO, but there are significant differences between IOMT and SMBO. First, the SMBO only
considers the impact of hyperparameters on the results, neglecting changes in the model parameter
states. When the initial parameter states differ, the performance evaluation of hyperparameters is
also different. In contrast, IOMT introduces additional parameter inputs to the surrogate model
and considers the training progress in the acquisition function to study the “short-term” gain on
different parameter states. Secondly, SMBO aims to select the best hyperparameters (i.e., coarse-
grain tuning), whereas IOMT aims to obtain the best model (i.e., fine-grain tuning). Compared to
SMBO, IOMT enables the collaboration of various hyperparameters within a single training process.

4.2 ANALYZING THE ADVANTAGES OF IOMT
—SGD —Adam —IOMT

Accuracy: IOMT achieves a DNN training with in-
terleaving optimizers, enabling collaboration among i
multiple optimizers. This fine-grain optimizer tun- (E\A -
ing not only integrates the optimization strategies of ~ \
different optimizers but may also yield an optimiza- A
tion path (i.e., the final trained model) that a single
optimizer cannot achieve, resulting in higher accu-
racy. Figure Ma) provides examples across three dif-

(a) optimization path

(o]

! i | : .] . @5 opt.
ferent functions, illustrating that IOMT can discover g ®4 opt
optimization paths that a single optimizer cannot & ® J " e S o ©3 opt
achieve. Similarly, the final model weights obtained S @ o () Ee, ©® ... @ o2 opt
from training for the same number of epochs on b ‘1o t.
the cifarl0 dataset using different optimizers show ™ Pt

: PCA component 1

significant differences, as illustrated in Figure [7[b). : .
This hybrid approach, which employs multiple opti- (b) trained model weights
mizers, expands the search space of traditional train-

. . . Figure 7: Analyze of interleaving training.
ing, leading to an improved accuracy upper bound.

Training efficiency: We analyze the time cost of IOMT using the training of ResNetl18 (whose
training FLOPs ¢5; ~ 1.8 X 10%) on the cifarl0 dataset (i.e., feature dimensions D =~ 3 X 103,
instance number N = 6 x 10%, and class number K = 10) with epoch number ngpocy = 100, batch
size ng; = 64 and switching iteration number 7 = 20 as an example. For the vanilla training, the
time cost for a single epoch is trgay &= 2 X tpr X N &= 2 X 104, Compared to vanilla training, [OMT
incurs additional time consumption due to two processes: transferability assessment before training
test and the updating of the surrogate model during the training process. First, the ¢z includes
the computation for two distribution-based metrics (i.e., LEEP and LogME) and one performance-
based metric. Among them, the time cost for the LEEP and performance-based metrics is equivalent
to a single forward pass (Nguyen et all, [2020), while the computational complexity of LogME is
O(KD?+ NKD+ D?*+ ND?) ~ 3 x 10" (You et al.| 2021). Then, the transferability assessment
time tgst A trpan (actually smaller in practical, e.g., tgst = trramv X 1%). Second, the additional
time consumption from the updating of the surrogate model ¢s, includes the PCA compression of
the selected parameters and the updating of the Gaussian process model. The time complexity of
compression and updating is O(W?2D') and O(N3,), where W ~ 10* represents the number of
selected parameters (i.e., only the last layer), D’ ~ 100 represents the number of PCA components,

Under review as a conference paper at ICLR 2025

Table 1: Test accuracy (%) of the full training with different optimizers.

method usps mnist stl10 cifar10
ResNet18 ViT ResNet18 ViT ResNet18 ViT ResNet18 ViT
SGD 1 96.10+024 97.46x070 + 99.291003 99.50+004 + 86.941040 97.83+022 + 80.73+043 97.53+003
SGDM : 95.83+030 97.68+0.11 : 99.47+005s 99.65+0.04 : 86.99+036 96.61+0.04 : 81.64+060 97.58+004
Adagrad | 96.00+094 93.40+004 | 99.40+006 98.24+050 | 83.38+799 78.66+254 | 80.57+0.14 60.95+0.62
RMSprop ' 95.30+055 95.25+004 ' 99.13+017 98.14+4009 ! 69.914206 88.62+445 | 71.92+041 78.09+0.92
Adam | 95.13205 93.26:078 | 99.11x006 99.01+008 | 76494204 82.26x116 | 7233084 75.23+09
"SWATS 19553011 94.00+123 1 99.17x011 98.73x0.13 1 79.76+211 88.03%044 | 75.17+x021 66.15+474
Padam 196.10+015 97.58+011 ! 99.46+002 99.66+004 | 85.64+048 90.81+006 ' 81.58+038 96.03+003
AdaBound | 95.02:017 87.64:081 | 99.25:006 97.54x0.13 | 84481042 86.33:230 | 69.27+500 70.91435
ours 1 96.81 1021 97.81+1021 | 99.511001 99.71+002 | 88.231023 98.2110.19 | 84.1410.1 98.04+0.03

and Ny, = Ngpocn —2— ~ 5 x 10 represents the total switching operations in the tuning process.

T XNpy
Then, we can calculate tgyx ~ 10° < trpa. Since tysr is executed only once before training and
tsur < trrain, the additional time in IOMT is minimal. Furthermore, thanks to its adaptability to

different parameter states, [OMT is able to achieve better convergence speed.

5 EXPERIMENTAL STUDY

To investigate the rationality of IOMT, we conducted experiments and present the experimental
results in this section. We first exhibit two overall experiments to observe the performance of IOMT
in full training and PEFT. Then, we illustrate a case study to observe the practical switching process
of IOMT during training. In addition, several independent experiments are presented to investigate
the significance of designs within IOMT.

In the experiments, we used 4 ImageNet pre-trained models available from PyTorch (Paszke et al.,
2019) (i.e., ResNet18, ResNet152, MobileNet V2, and ViT) and 2 pre-trained NLP models from
HuggingFace (Wolf et al., [2020) (i.e., RoBerta and LLaMA-7B). For the selection of datasets, we
took 4 commonly used CV datasets from PyTorch (i.e., usps, mnist, stl10, and cifar10) and 3 NLP
tasks from Hugging Face (i.e., mrpc, qqp, and wnli). In addition, the experiments were conducted
on a Linux machine with a 128-core 2.6GHz Intel(R) Xeon(R) Platinum 8358 CPU and 512GB
main memory. More details of the models and datasets used in our experiments can be found in

Appendix
5.1 OVERALL PERFORMANCE OF IOMT

We first compared our proposed IOMT with the
training using a single optimizer or hybrid op-

——SGD ——Adam ——SWATS AdaBound —ours

200

timizers under full training and PEFT. Specifi- ‘: usps st10
cally, five commonly used optimizers were tested 2 i/

for single optimizer training: SGD (Robbins &| £ 1o,

Monrol, [1951), SGDM (Sutskever et al}[2013), Ada- &

grad (Duchi et al.,|2011)), RMSProp (Graves, |2013)),
and Adam (Kingma & Bal |2014). For hybrid op-
timizer training, we included SWATS (Keskar &
Socher, [2017), Padam (Chen et al., 2018)), and Ad-
aBound (Luo et al., 2019). The initial learning rate
and training epochs of each method were setting as
[0.1,0.01,0.001] and 100. For IOMT, we set the ini-
tial steps n;,; = 50 and training time 7 = 25 itera-
tions. More details of the baselines and settings are
presented in Appendix

test accuracy (%)

0 50
training epoch

100
training epoch

Figure 8: The training loss and test accuracy

Experiments on full training. The experimental re-
line graph.

sults show that the switching method proposed in
IOMT can always achieve good improvements in

Under review as a conference paper at ICLR 2025

test accuracy (i.e., 1%-3%), as shown in Table E} However, other hybrid methods often perform
worse than training with a single optimizer, especially in complex tasks (i.e., st//0 and cifariO
datasets). Additionally, compared to other methods, IOMT exhibits smaller variance, indicating
more stable performance outputs. To illustrate the convergence of IOMT, we present the training
loss and test accuracy of each method in the Figure 8] For ease of observation, the baselines with
significant fluctuations are not displayed in the figure. It can be observed that IOMT shows a faster
convergence speed compared to the vanilla method.

Experiments on PEFT. In addition to the full training, we also compared the proposed IOMT with
baselines on the PEFT that only update partial of the model parameters, including the head fine-
tuning (Poojary & Pail [2019) in CV problems and the LoRA (Hu et al 2021)) in NLP tasks. To
analyze the convergence performance, we terminated the training when the convergence conditions
were satisfied, i.e., the change of loss is less than 1 x 10~% in 10 consecutive epochs or the train-
ing reaches 100 epochs. Table [2] presents a partial of the experimental results, more experimental
results and setting details can be found in the Appendix |C| Like its performance in full training,
IOMT achieves higher accuracy and F; score (up to 2%) for both CV and NLP tasks. In terms of
convergence time, the end-to-end results shown in the table indicate that IOMT has a faster con-
vergence speed in PEFT (e.g., 10% faster on usps. Meanwhile, the time cost for transferability
assessment (i.e., the time indicated after “+” in the table) is much smaller than the training time,
which is consistent with the discussion in Section 4.2

Table 2: Test accuracy (%), F; score (%) and convergence time (sec.) of the PEFT. ViT for the CV
datasets (i.e., usps and stl10) and RoBerta for the NLP datasets (i.e., mrpc and ggp).

usps st110 mrpc qqp
method . .

accuracy time accuracy time accuracy Fl score accuracy Fl score
SGD 194421021 3169 1+ 97.75+016 275 0+ 85.21+035 87.21x+032 ' 82.13+052 75.19+0s2

SGDM | 95.67+014 2397 | 98.37x010 483 | 85541060 86.27:041 | 83.3006 75.27+0s
Adagrad | 95.37+021 2220 | 98.34+000 284 | 84.941059 87.29+046 | 83.47+1079 T3.28+0s3
RMSprop ' 94.64+053 2208 1 97.91+007 568 1 84.09+076 89.24+074 ' 82.09+063 74.09+092
Adam 944700 2205 9836s0m 694 | 86,5207 903705 | 82.27c0m T49sam
SWATS | 95124021 2643 | 98.38+010 822 | 86.27+062 90.34+042 | 80.79+081 74.80+0.19
Padam 195.72+042 2234 1 98.38+010 598 ! 80.64+032 87.07+0s2 ' 73.04+001 80.93+0s83
AdaBound | 95.42+011 2232 | 98.30+01s 199 | 6838050 81.22:004 | 78.64204 79.01:0.2

ours 1 96.12+010 203042 | 99.01+000 180+1 | 87.99+013 91.36+0.15 | 85.57+014 81.18+031

In summary, IOMT demonstrates excellent tuning performance and convergence speed across dif-
ferent training approaches, various models, and downstream tasks. The combination of model trans-
ferability analysis and optimizer switching based on parameter surface characteristics effectively
assists DNN training.

5.2 CASE STUDY FOR THE SWITCHING PROCESS OF IOMT

To observe IOMT’s switching process, we con- -0-SGD ~-SGDM ~x-IOMT —switch line
ducted a case study with a simple task hy- ’
menoptera from Kaggle and a restricted opti-
mizer space (only for SGD and SGDM). The
training loss and the optimizer switch process
are plotted in Figure[0] After the initial stages
with weighted random sampling, [OMT selects
the suitable optimizer with faster convergence 20 30 40 50 60
speed for training, i.e., the SGDM selected in #raining epoch

Figure 0] After that, the optimizer switch op- o)

eration occurs when a decrease in the conver- Fllgure 93 The training loss line of the case study
gence speed of the optimizer (Point A) or de- With vanilla FT and IOMT.

tects a local stable state (Point C). Additionally,

during tuning, IOMT may also undergo temporary switches to adjust the optimization state (Point
B). This case study demonstrates that IOMT can effectively select the appropriate optimizer based
on the model parameter state, thereby improving convergence speed and model quality.

training loss

Under review as a conference paper at ICLR 2025

5.3 INDEPENDENT EXPERIMENTS

Additionally, we conducted several independent experiments to further analyze the effectiveness of
IOMT. In this section, we outline the main conclusions, with further details available in Appendix[D}

The optimizer selection strategy. IOMT employs an optimizer selection strategy that considers
variance, transferability, and training process. Table [/| presents comparative results for different
selection strategies. Compared to random or periodic switching, IOMT achieves higher accuracy
(up to 2%) and lower variance. Additionally, the ablation experimental results indicate that the
designs for transferability assessment and variance reduction further enhance its advantages.

The initial selection method. Compared with random selection, the weighted selection in IOMT
significantly enhances the stability of the surrogate model, which reduces variability in the training
outcomes, as shown in Figure [T0fa).

The model compression technique. Table [[0]illustrates the effects of various feature compression
techniques on training results. For the selected tasks (i.e., usps and mnist), simple methods like
random projection and PCA outperform the more complex UMAP technique. This suggests that
basic compression techniques are adequate for training the surrogate model.

The optimizer search space. We broadened the hyperparameter space of candidate optimizers to
explore how this expanded search space affects IOMT’s performance. The experimental results
shown in Figure [[T]indicate that IOMT continues to perform well in the enlarged search space.

The influence of hyperparameter setting. We also performed an experimental analysis on the
hyperparameters in IOMT, including the initial step n;,;, switch step size 7, and the number of PCA
components. Figure[I0[b-d) presents the experimental results, demonstrating that a small initial step
(e.g., only 10 for small dataset usps), switch step size (10% of an epoch) and PCA components (e.g.,
2) can achieve good accuracy. A more detailed analysis can be found in Appendix [D}

100 o] 97
:: W\f ,/" < 96.5 05 7\\._,-/*”/\% 96 \//\
] &
g offl | T
3 g 955 i 95
3 20 usps £ usps 91 usps usps
< 31
§ 95 €995 99.7:
E % 9.5 T N
=l & r
S 80[init, mnist 992[mnpist 99'07‘ o mpist 9930 mpist
0 100 10 100 10% 100% 2 10
(a) training epoch (b) init step n;p; (c) switch step T = x epoch (d) # PCA components

Figure 10: The experimental results of independent experiments.

6 CONCLUSION

The selection of optimizers and their hyperparameters plays a crucial role in deep neural network
(DNN) training. Traditionally, researchers use a single optimizer during the whole training (i.e., a
coarse-grain optimizer tuning), which limits the model quality and convergence speed. Currently,
some works attempt to leverage the advantages of different optimizers during training to achieve
higher-quality models. However, these methods are still constrained by merely adjusting the learning
rate or transitioning between two types of optimizers, overlooking the unique strengths of various
optimizers under different parameter states. To better combine the benefits of different optimiz-
ers, we introduce a fine-grain optimizer switch method called Interleaving Optimizers for Model
Training (IOMT) in this paper. Specifically, IOMT constructs surrogate models during training to
estimate the performance of different optimizers under varying model parameter states. In addition,
IOMT employs a transferability assessment to enhance the selection of optimizers. Combining the
predicted performance and transferability information with an acquisition function, IOMT gets the
estimation of optimization gain for each optimizer and switches the optimizer with the largest score
for the training stage. The experimental results on full training and PEFT demonstrate that IOMT
achieves a better model quality (e.g., 3% accuracy improvement on s#//0 dataset) with faster conver-
gence (e.g., 10% on the s7/10 dataset). In addition, a case study and two independent experiments
further investigate the optimizer switching process and design details of IOMT.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Steven Adriaensen, André Biedenkapp, Gresa Shala, Noor Awad, Theresa Eimer, Marius Lindauer,
and Frank Hutter. Automated dynamic algorithm configuration, 2022. URL https://arxiv.
org/abs/2205.13881.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom
Schaul, Brendan Shillingford, and Nando de Freitas. Learning to learn by gradient descent by
gradient descent, 2016. URL https://arxiv.org/abs/1606.04474.

Francesco Barbieri, Jose Camacho-Collados, Leonardo Neves, and Luis Espinosa-Anke. Tweet-
eval: Unified benchmark and comparative evaluation for tweet classification. arXiv preprint
arXiv:2010.12421, 2020.

Jose Camacho-collados, Kiamehr Rezaee, Talayeh Riahi, Asahi Ushio, Daniel Loureiro, Dimosthe-
nis Antypas, Joanne Boisson, Luis Espinosa Anke, Fangyu Liu, and Eugenio Martinez Cdmara.
TweetNLP: Cutting-edge natural language processing for social media. In Wanxiang Che and
Ekaterina Shutova (eds.), Proceedings of the 2022 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations, pp. 38—49, Abu Dhabi, UAE, December
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-demos.5. URL
https://aclanthology.org/2022.emnlp-demos. 5.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. arXiv preprint
arXiv:1806.06763, 2018.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intel-
ligence and statistics (AISTATS), pp. 215-223. JMLR Workshop and Conference Proceedings,
2011.

William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the International Workshop on Paraphrasing, 2005.

Timothy Dozat. Incorporating Nesterov Momentum into Adam. In Proceedings of the 4th Interna-
tional Conference on Learning Representations (ICLR), pp. 1-4.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research (JMLR), 12(7), 2011.

Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A closer look
at deep learning heuristics: Learning rate restarts, warmup and distillation. arXiv preprint
arXiv:1810.13243, 2018.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

James Harrison, Luke Metz, and Jascha Sohl-Dickstein. A closer look at learned optimization:
Stability, robustness, and inductive biases, 2022. URL https://arxiv.org/abs/2209.
11208.

Esraa Hassan, Mahmoud Y Shams, Noha A Hikal, and Samir Elmougy. The effect of choosing
optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools
and Applications (MTA), 82(11):16591-16633, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), pp. 770-778, 2016.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples, 2021. URL https://arxiv.org/abs/1907.07174,

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

11

https://arxiv.org/abs/2205.13881
https://arxiv.org/abs/2205.13881
https://arxiv.org/abs/1606.04474
https://aclanthology.org/2022.emnlp-demos.5
https://arxiv.org/abs/2209.11208
https://arxiv.org/abs/2209.11208
https://arxiv.org/abs/1907.07174

Under review as a conference paper at ICLR 2025

Jonathan J. Hull. A database for handwritten text recognition research. IEEE Transactions on
pattern analysis and machine intelligence (TPAMI), 16(5):550-554, 1994.

Daniel Jiwoong Im, Michael Tao, and Kristin Branson. An empirical analysis of the optimization of
deep network loss surfaces. arXiv preprint arXiv:1612.04010, 2016.

Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from
adam to sgd. arXiv preprint arXiv:1712.07628, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Caterina Labrin and Francisco Urdinez. Principal component analysis. In R for Political Data
Science, pp. 375-393. Chapman and Hall/CRC, 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503-528, 1989.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning (ICML), pp. 2408-2417, 2015.

Cuong Nguyen, Tal Hassner, Matthias Seeger, and Cedric Archambeau. Leep: A new measure
to evaluate transferability of learned representations. In International Conference on Machine
Learning (ICML), pp. 7294-7305. PMLR, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Neural Information Processing Systems (NeurIPS), 2019. URL
https://api.semanticscholar.org/CorpusID:202786778.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
J. Control Optim., 30(4):838-855, July 1992. ISSN 0363-0129. doi: 10.1137/0330046. URL
https://doi.org/10.1137/0330046.

Ramaprasad Poojary and Akul Pai. Comparative study of model optimization techniques in fine-
tuned cnn models. In 2019 International Conference on Electrical and Computing Technologies
and Applications (ICECTA), pp. 1-4. IEEE, 2019.

Guannan Qu and Na Li. Accelerated distributed nesterov gradient descent. IEEE Transactions on
Automatic Control, 65(6):2566-2581, 2019.

Esther Kim Quora. (2017). Question Pairs Dataset, Version 2. Retrieved May 1, 2024 from https:
//www.kaggle.com/datasets/quora/question-pairs—-dataset.

12

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://api.semanticscholar.org/CorpusID:202786778
https://doi.org/10.1137/0330046
https://www.kaggle.com/datasets/quora/question-pairs-dataset
https://www.kaggle.com/datasets/quora/question-pairs-dataset

Under review as a conference paper at ICLR 2025

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400407, 1951.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Eric Schulz, Maarten Speekenbrink, and Andreas Krause. A tutorial on gaussian process regression:
Modelling, exploring, and exploiting functions. Journal of Mathematical Psychology, 85:1-16,
2018.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference
on applications of computer vision (WACV), pp. 464-472. IEEE, 2017.

Derya Soydaner. A comparison of optimization algorithms for deep learning. International Journal
of Pattern Recognition and Artificial Intelligence (IJPRAI), 34(13):2052013, 2020.

Ruo-Yu Sun. Optimization for deep learning: an overview. Journal of the Operations Research
Society of China, 8(2):249-294, 2020.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initializa-
tion and momentum in deep learning. In International conference on machine learning (ICML),
pp.- 1139-1147. PMLR, 2013.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. ArXiv, abs/2302.13971, 2023. URL https://api.semanticscholar.
org/CorpusID:257219404.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. Advances in neural information process-
ing systems (NeurIPS), 30, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-
of-the-art natural language processing, 2020.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 35(12):10665-10673, 2021.

Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. Logme: Practical assessment of pre-
trained models for transfer learning. In International Conference on Machine Learning (ICML),
pp.- 12133-12143. PMLR, 2021.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in ob-
served gradients. Advances in Neural Information Processing Systems (NeurIPS), 33:18795—
18806, 2020.

A OVERALL ALGORITHM AND PSEUDOCODE OF IOMT

For ease of reading, Table [B] provides the explanations of key notations used in this paper for IOMT.

In this section, we provide an overview of IOMT with the pseudocode in Algorithm [I] For ease
of understanding, we only switch the types of optimizers in the description while keeping the hy-
perparameters and training time constant (i.e., ' = 7 iterations). Before the model’s training,
IOMT first calculates the transferability weight w; to assist in the subsequent selection of optimizers
(Line [3). Then, a randomly selected initial optimizer o; is used for model training and loss calcu-
lation (Lines [8}[9). When the number of iterations meets the time constant 7, IOMT calculates the

13

https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404

Under review as a conference paper at ICLR 2025

Table 3: The description of notations used in IOMT.

notation description
switch step 7 the number of iterations for a single switch cycle.
init step n;p; the number of switch cycles for the initial phase.
selection weights wy the sample weights for the initial phase

transferability weight w; the transferability weight which is calculated by the performance-
based metric w; and distribution-based metric wy

Algorithm 1: Basic framework of our proposed [OMT.

Input: Training Dataset D = {Dyyqin, Dtest }, m optimizers O = {01, ..., om }, the model for training
M with initial parameter state 8°, the init steps 1, the switch step size 7, the training epochs
Nepoch
1 initialize: n, <— 0,n < 0, G < {91, 92, ..., gm }, wr < {1|1,...,m}, j < RandomSelect(m),
losses < [], v < CompressModel(M, 6°)

2 /% calculate the transferability weight before the training */
3 w; + CalculateTransferabilityWeight(M, 8%, Dyqin) // as Equation (|§|)
4 /x training models with interleaving optimizers */

5 for i in [1, Nepocr] do

6 for BATCH in D¢rqin do

7 n<n+1

8 0" « TrainModel(M, 8", BATCH, o;)

9 [+— CalculateLoss(M, 8™, BATCH), losses.append(l)

10 if n%7 = 0 then

1 s < CalculateOptimizationGain(losses) // as Equation ()
12 g; < UpdateSurrogateModel(g;, v, s)

13 v <— CompressModel(M, ™)

14 // init steps with a weighted random selection
15 if ny < nin; then

16 wy[j] < UpdateSampleWeight(s) // as Equation ()

17 j < WeightedRandomSelect(w-)

18 // following steps with a surrogated selection
19 else

20 | Jj < SurrogatedSelect(v, w;, G, O)

21 end

2 ng < ne + 1, losses + |

23 end

24 end
25 end

Output: the trained model M with parameter state 8"

performance score s based on all losses within time ¢* (Line . Subsequently, the current opti-
mizer o; is updated by the surrogate model g; using the optimization gain s and the model features
v calculated at the end of the previous round (Lines [[2]T3). Based on the results from weighted
random selection or surrogate model selection, IOMT obtains the suitable optimizer for the next
training stage (Lines and continues this process iteratively until the final training results
are achieved.

For the selection of the suitable optimizer, IOMT employs two types of methods: the weighted
random selection and the surrogate model selection for the following steps. In the initial training
steps (i.e., ny < 7), IOMT uses the optimization gain s to update the sampling weight w, for
randomly select configurations for training (Lines [T4I7). After obtaining enough training results
(i.e., ny > 1), IOMT utilizes the trained surrogate models to select the configurations used for the
following training (Line[20). The configuration with the highest score (i.e., Equation [7) is selected
for the next training iteration.

14

Under review as a conference paper at ICLR 2025

B DATASETS AND MODELS USED IN EXPERIMENTS

In the experiments, we used 4 CV datasets from Pytorch (Paszke et al.,[2019) (i.e., usps, mnist, stl10,
and cifar10) and 2 NLP datasets from Hugging Face (Wolf et al.l 2020) (i.e., mrpc and qgp). The
information on these downstream tasks is as follows:

* usps (Hull, |1994): a classical digit dataset automatically scanned from envelopes by the U.S.
Postal Service containing a total of 9,298 16x16 pixel grayscale samples, which includes 10
classes of figures.

» mnist (LeCun et al.,|1998)): a handwritten digits dataset with 28x28 grayscale figures, which has a
training set of 60,000 examples and a test set of 10,000 examples.

* st110 (Coates et al.L 2011): a 10-classes 96x96 color figure dataset, which has 500 training images
and 800 test images per class. The dataset is inspired by the cifar-10 (Krizhevsky et al.,2009) but
with some modifications.

* cifarl0 (Krizhevsky et al.,[2009): a 10-classes 32x32 color figure dataset, which has 5,000 training
images and 1,000 test images per class.

» mrpc (Dolan & Brockett, [2005): the Microsoft Research Paraphrase Corpus, which consists of
5.8k sentence pairs that were automatically extracted from online news sources. The sentence
pairs have been annotated by human raters to indicate whether the sentences within each pair are
semantically equivalent.

* ggp (Quora)): the Quora Question Pairs dataset, which consists of over 400,000 pairs of questions.
Each question pair is annotated with a binary value indicating whether the two questions are
paraphrases of each other.

As for the pre-trained models, we used 4 ImageNet pre-trained models available from Py-
Torch (Paszke et al., 2019) (i.e., ResNet18, ResNet152, MobileNet V2, and ViT) and a pre-trained
NLP models RoBerta (Camacho-collados et al., [2022)) and LLaMA-7B (Touvron et al., [2023) from
HuggingFace (Wolf et al., 2020) which trained on 124M tweets from January 2018 to December
2021, and finetuned for sentiment analysis with the TweetEval benchmark (Barbieri et al.| [2020).
It can be found that among the downstream tasks, st//0, mrpc and gqp are relatively close to the
upstream task, and usps and mnist have a certain correlation with the upstream task. We selected
downstream datasets with varying degrees of relevance to the upstream task, to better analyze the
performance of the proposed method in different scenarios.

C DETAILS OF OVERALL EXPERIMENTS

C.1 EXPERIMENT SETTINGS

In the overall experiment, we compared 5 single optimizer methods (i.e., SGD (Robbins & Monro,
1951), SGDM (Sutskever et al., [2013), Adagrad (Duchi et al., 2011), RMSProp (Graves, [2013))
and Adam (Kingma & Ba, 2014)), 3 hybrid methods (i.e., SWATS (Keskar & Socher; 2017),
Padam (Chen et al.| [2018), and AdaBound (Luo et al) 2019)), and the proposed IOMT. The sin-
gle methods are all from the PyTorch implementation, and except for the learning rate being set in
[0.1,0.01,0.001] and the epoch number being set to 100, the other hyperparameters are set to the
default values in PyTorch. Additionally, for the three hybrid methods, we installed and used the
original implementations from the authors via Github and PyPI. The hyperparameter settings were
kept at their defaults, except for the epoch number, which was adjusted to be consistent with the
other methods. In addition, all the experiments in this paper are conducted 3 times with different
random seeds to avoid randomness.

C.2 MORE EXPERIMENTAL RESULTS

In addition to the results in Section we also conducted more experiments to analyze the charac-
teristics of IOMT, and the results are presented in this section.

We first compared IOMT with additional baselines, including various optimizers (i.e.,
ASGD (Polyak & Juditsky] [1992), AdamW (Loshchilov & Hutter| 2019), Nadam (Dozat), and

15

Under review as a conference paper at ICLR 2025

Adamax (Kingma & Ba] 2017)) and training with learning rate schedulers (i.e., StepLR and
CosineAnnealingLR in PyTorch). The results of these experiments are shown in Table 3, where
we retained only the best results for training with a scheduler, specifically those obtained using
SGDM. IOMT consistently achieved the highest test accuracy among all the methods evaluated.

Table 4: Test accuracy (%) of the full training with more baselines.

ASGD AdamW Ndam Adamax SGDM stepLR cosLR ours

usps 95.83 95.62 95.32 96.06 :95.83 91.31 95.80 96.81
mnist 99.25 98.97 99.18 9932 | 9947 94.72 99.46 99.51

Additionally, we also conducted experiments using a complex imbalanced dataset ImageNet-
A (Hendrycks et al] 2021), with the results displayed in Table B} IOMT’s dynamic adaptation
to critical saddle points enhances performance on complex problems, resulting in over a 2% im-
provement in top-1 accuracy.

Table 5: Test accuracy (%) of the full training on ImageNet-A dataset.

SGD SGDM Adagrad RMSprop Adam SWATS Padam AdaBound ours

acc@l 1524 16.19 5.20 4.13 3.53 : 3.68 16.31 4.33 18.47
acc@3 30.74 31.20 13.12 10.42 9.87 | 894 31.76 11.23 33.83
acc@5 3829 39.68 17.49 17.52 13.83 1 12.55 40.01 15.46 41.32

In addition to the results presented in Table 2] we also conducted more PEFT experiments on differ-
ent models. Table [6] shows the experimental results. IOMT achieves superior test accuracy across
more models and tasks.

Table 6: The testAcc. (%) and tuning time (sec.) for the vanilla method and our IOMT under the
head fine-tuning. The time of IOMT includes the tuning time and the transferability estimation time.

task usps mnist st110
model method testAcc. (%) time (sec.) testAcc. (%) time (sec.) testAcc. (%) time (sec.)
SGDM 68.8610.71 534 71.59+188 4443 91.87+127 18551
®© Adam 66.04+0.11 543 71.16+1.46 4876 91.02+187 14909
E SWATS 68.55+051 453 73.27+038 4651 92.02+136 14285
4 Padam 65.32+120 505 70.41+052 4743 92.36+036 19919
~ AdaBound 67.80-+027 568 72.66+031 4944 92.23+137 34858
ours 70.64+0.50 527+4 74.79+338 4801+6 93.56-+0.11 13240425
SGDM 72.27 +012 4443 77.54+1102 7437 96.66+032 78232
- Adam 71.73+126 4876 77.64+172 7636 96.11+03 48541
E SWATS 71.82+027 5121 78.47+0.18 9211 96.66+051 115560
4 Padam 72.31+0.69 5594 76.18+1.17 8878 96.51+039 107856
~ AdaBound 72944133 4508 78.33 1067 12934 95.44 1247 152592
ours 74.36-£0.1 5001+6 79.60-x0.60 7637+8 97.60+0.28 44381+68
o SGDM 91.28+039 18551 93.74 1077 50294 92.14+0m 11464
= Adam 89.86+022 12237 93.82+0.11 55024 91.31+0m 15208
% SWATS 90.68+0.25 17921 93.90+028 57655 92.77+027 12971
= Padam 90.69+0.67 18940 92.71+022 51656 91.69+029 12941
S AdaBound 91.36+037 17328 93.67+094 46955 91.39+045 24367
= ours 92.32+039 13240+8 94.65+0.06 56121+11 93.28-+0.79 14972+70

D DETAILS OF INDEPENDENT EXPERIMENTS
The selection of optimizer switch strategy. Compared to switching optimizers with simple strate-

gies, IOMT employs the transferability assessment w; and variance halving in its acquisition func-
tion. To estimate the effectiveness of our design, we compared IOMT with two simple strategies

16

Under review as a conference paper at ICLR 2025

(random switch “random’ and periodic replacement “cyclical”’) and two ablation versions (without
transferability assessment “w/o w;” and without variance halving “w/o halve”). The experimental
result in Table[7]shows that simple random or periodic switching fails to produce high test accuracy.
In addition, the usage of transferability assessment and variance halving both effectively enhance
the adaptability of the current task, resulting in improved accuracy (up to 2%) and lower variance.
Additionally, we also compared IOMT with these strategies under other models (i.e., ResNet152
“RN152” and MobileNet V2 “MN”), as shown in Figure [8]and Figure[J]

Table 7: Experimental results for different switch strategies under full training on ResNet18.

method . usps . . mist .
trainAcc. (%) testAcc. (%) time (sec.) trainAcc. (%) testAcc. (%) time (sec.)
random ' 98.36+222 94.27 +1.41 225 + 98.91+039 98.33+046 1916
oyclical | 9738416y 92881101 223 199494020 9894wens 1914
w/0 wy ; 99.55x027 95.82+042 205 1 99.72x000 99.25+007 2101
w/o halve | 99.54 1022 95.70+03s 226 1 99.67 021 99.19+0.08 2095
ours 199.67 +0.19 96.51+0.08 227 1 99.85-+0.17 99.48+0.03 1965

Table 8: The independent experimental re- Table 9: The independent experimental result for dif-

sult for transferability assessment. ferent optimizer switching strategies.
metric w/o w; with w; metric random cyclical ours
N trainAcc. (%) 80.47 81.10 N trainAcc. (%) 76.56 77.79 81.10
E testAcc. (%) 72.6 75.29 = testAcc. (%) 71.49 71.95 75.29
& time(sec.) 3531 334749 B time(ec) 3271 3299 334749
" ‘trainAcc. (%) 98.38 9842 trainAcc. (%) 97.58 98.01 98.42
§ testAcc. (%) 9157 91.93 § testAcc. (%) 9033 90.73 91.93
time (sec.) 26084 2327148 time (sec.) 24997 23712 23271+8

The initial selection method. We compared the impact of using random selection and weighted
selection during the initial phase on subsequent training. In the experiments, we set the initial phase
to 20 epochs and used a switch step size of 7 = 25.

The model compression technique. We compared the impact of using other compression tech-
niques within IOMT on the results, as shown in Table [T0}

The optimizer space. We examined how different candi-
date hyperparameter spaces affected the performance of
IOMT. In addition to the original HP space described in
Sectionlﬂl(where learning ratec [0.1, 0.01, 0.001]), we
systematically expanded this space by including the fol-
lowing components: (1) weight decay for SGD, (2) mo-
mentum for SGDM, (3) weight decay for Adagrad, (4) 0 b 4 6
weight decay for RMSprop, (5) alpha for RMSprop, and
(6) weight decay for Adam. The ranges for these addi-
tional hyperparameters are as follows: weight decay val- - Fjgyre 11: Test accuracy (%) for IOMT
ues € [le-2, le-3, le-4], momentum € [0.5, 0.6, 0.7, 0.8, and baselines across various optimizer
0.9], and alpha € [0.5, 0.6, 0.7, 0.8, 0.9]. Figure [[T]illus- space on usps.

trates the performance of the baseline methods compared

to IOMT as the search space diversifies. For the baseline

methods, we report the best accuracy achieved within the search space. Overall, IOMT demon-
strates robust performance and consistently surpasses the baseline methods, even as the number of
candidate hyperparameters increases.

97.4r - baseline - ours

test accuracy (%)
O
o
o]

additional HP space

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 10: Experimental results for different compression techgniues under full training on ResNet18.

method usps mnist

trainAcc. (%) testAcc. (%) time (sec.) trainAcc. (%) testAcc. (%) time (sec.)
RP 99,72 +0.12 96.44 +0.17 201 + 99.61+0.15 99.22+0.18 1869
UMAP | 98.56:14s 95.15:215 253 1 99.73006 98.98+013 2182
PCA | 99.58+0.13 96.34+025 222 1 99.86+0.13 99.48+0.06 1974

The hyperparameter settings. In the experiments, we set the default hyperparameter configuration
to nin; = 20, 7 = 25, and n_components= 2. Based on the results presented in Figurem we have
made the following observations.

* init step m;,;: Thanks to the ongoing updates of the surrogate model during training in IOMT,

even a small initial step (i.e., n;,; = 20) can produce models with high test accuracy.

switch step size 7: A smaller step size facilitates quicker switching of the optimizer, which en-
hances accuracy (e.g., 7 = 20% of an epoch). Conversely, a larger step size makes it more
challenging to collect training data for the surrogate model, resulting in a longer switching cycle
and greater variance in the results.

PCA components number: Selecting a small number of PCA components (for example, 2) can
often yield good performance in IOMT. On the other hand, using a larger number of components
may impair the surrogate model’s ability to learn effectively, resulting in greater variance in test
accuracy.

18

	Introduction
	Related Works and Background
	Our Proposed Methods: IOMT
	Overview of our proposed IOMT
	Motivation and Problem Formulation
	Estimating optimization performance with surrogate models
	Selecting Optimizers with Acquisition Function

	Discussion
	Analyzing the Differences between IOMT and HPO
	Analyzing the Advantages of IOMT

	Experimental Study
	Overall Performance of IOMT
	Case study for the switching process of IOMT
	Independent Experiments

	Conclusion
	Overall Algorithm and Pseudocode of IOMT
	Datasets and Models used in Experiments
	Details of Overall Experiments
	Experiment Settings
	More Experimental Results

	Details of Independent Experiments

